Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing plant disease resistance.

نویسندگان

  • Yogasudha Veturi
  • Kristen Kump
  • Ellie Walsh
  • Oliver Ott
  • Jesse Poland
  • Judith M Kolkman
  • Peter J Balint-Kurti
  • James B Holland
  • Randall J Wisser
چکیده

ABSTRACT The mixed linear model (MLM) is an advanced statistical technique applicable to many fields of science. The multivariate MLM can be used to model longitudinal data, such as repeated ratings of disease resistance taken across time. In this study, using an example data set from a multi-environment trial of northern leaf blight disease on 290 maize lines with diverse levels of resistance, multivariate MLM analysis was performed and its utility was examined. In the population and environments tested, genotypic effects were highly correlated across disease ratings and followed an autoregressive pattern of correlation decay. Because longitudinal data are often converted to the univariate measure of area under the disease progress curve (AUDPC), comparisons between univariate MLM analysis of AUDPC and multivariate MLM analysis of longitudinal data were made. Univariate analysis had the advantage of simplicity and reduced computational demand, whereas multivariate analysis enabled a comprehensive perspective on disease development, providing the opportunity for unique insights into disease resistance. To aid in the application of multivariate MLM analysis of longitudinal data on disease resistance, annotated program syntax for model fitting is provided for the software ASReml.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses

The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...

متن کامل

Transition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses

In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...

متن کامل

A Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response

In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...

متن کامل

Imputation of missing covariates under a multivariate linear mixed model

1 Schafer, J.L. (1997) Imputation of missing covariates under a multivariate linear mixed model. You can also refer to the following paper. Schafer J L, Yucel RM (2002). Computational strategies for multivariate linear mixed-effects models with missing values. The technical report starts from next page. Linear mixed-eeects models have been widely used in the analysis of longitudinal and cluster...

متن کامل

New applications of statistical tools in plant pathology.

ABSTRACT The series of papers introduced by this one address a range of statistical applications in plant pathology, including survival analysis, nonparametric analysis of disease associations, multivariate analyses, neural networks, meta-analysis, and Bayesian statistics. Here we present an overview of additional applications of statistics in plant pathology. An analysis of variance based on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytopathology

دوره 102 11  شماره 

صفحات  -

تاریخ انتشار 2012